Morasko

Fatia 7.2g

  • País: Polônia
  • Classificação: Siderito IAB Complexo
  • Massa total: 290 kg
  • Queda observada: Não
R$ 199,00
Morasko

No norte da Polônia, às margens da cidade de Poznań, encontra-se um dos mais fascinantes sítios meteóricos do mundo: a Reserva Natural de Meteoritos de Morasko. Neste local histórico e geológico, repousam sete crateras de impacto formadas por colisões cósmicas há cerca de 5.000 anos, variando de 25 a 60 metros de diâmetro. O mais impressionante é que cinco dessas crateras hoje são lagoas permanentes, discretos espelhos d’água que ocultam em sua origem um violento passado celeste.

A história do meteorito Morasko teve início em 1914, durante a Primeira Guerra Mundial, quando soldados alemães cavando trincheiras descobriram acidentalmente uma massa de ferro de 77,5 kg. O espécime foi levado inicialmente para Berlim, mas mais tarde foi incorporado à coleção científica da Universidade de Poznań. Desde então, diversos fragmentos adicionais foram recuperados na região, alguns deles entre os exemplares mais estéticos e bem preservados de meteorito metálico já encontrados — uma raridade, sobretudo por estarem diretamente associados a crateras ainda visíveis, o que é extremamente incomum na meteoritologia mundial.

O meteorito Morasko pertence ao grupo dos ferros silicáticos IAB, um tipo especial de meteorito metálico que, ao contrário dos ferros comuns derivados de núcleos derretidos de asteroides, acredita-se que tenha se formado próximo à superfície de corpos condríticos, após um imenso impacto primitivo — seguido, muito possivelmente, por um segundo evento catastrófico. Sua estrutura interna é revelada ao ser gravada com ácido: uma padrão de Widmanstätten de granulação grosseira, típico de octaedritos recristalizados, com traços de reaquecimento e deformação por choque, evidências claras de sua associação com um evento formador de cratera.

Entre os minerais presentes, destaca-se a schreibersita, um fosfeto de ferro e níquel de imenso interesse astrobiológico. Muitos cientistas sustentam a hipótese de que impactos de meteoritos metálicos ricos em schreibersita, como o Morasko, podem ter sido responsáveis por entregar o fósforo reativo necessário à origem da vida na Terra. Em um planeta jovem, onde o fósforo estava aprisionado em minerais insolúveis, a schreibersita oferecia uma forma bioquimicamente acessível desse elemento essencial — um elo crucial entre geologia e biologia primordial.

O meteorito Morasko não é apenas uma rocha espacial; ele é um mensageiro de uma era turbulenta do Sistema Solar, onde colisões eram constantes e moldavam não só asteroides e planetas, mas também as condições que permitiram o surgimento da vida. Ter um fragmento de Morasko nas mãos é como segurar um pedaço da história da Terra — e da própria vida — forjado no caos das primeiras eras do cosmos. E mais do que isso: é fazer parte de um raro capítulo onde a ciência, a beleza natural e a história cósmica convergem em um só lugar, nas florestas tranquilas e crateras esquecidas de Morasko.

Siderito

Assim como os acondritos, os sideritos são provenientes de corpos parentais cuja matéria primordial sofreu diferenciação. Este material, originário da nebulosa que formou o sistema solar e presente nos meteoritos condritos, sofreu a ação gravitacional ao longo de bilhões de anos dando origem a todos os corpos que conhecemos hoje no sistema solar como o sol, planetas, asteróides, etc. Os sideritos são meteoritos provenientes do núcleo desses corpos parentais onde o material mais pesado se concentrou como o Ferro e Níquel. Apesar de haver um grande número de meteoritos ferrosos já catalogados, a grande maioria não teve a sua queda observada. Somente uma pequena parcela das quedas observadas corresponde a meteoritos sideritos, a grande maioria é representada pelos condritos. Levando-se a conclusão que os meteoritos ferrosos são relativamente mais raros que os rochosos em nosso sistema solar.

Uma vez em ambiente terrestre, os meteoritos ferrosos sofrem menos desgaste que os condritos e, desta maneira, ainda podem ser encontrados após milhares de anos de sua queda. Os condritos, por sua vez, rapidamente sofrem a ação da atmosfera e rapidamente passam a ser confundidos com rochas terrestres e sua descoberta se torna cada vez mais difícil. Desta maneira, temos registros que achados de meteoritos ferrosos de milhares de anos e vários relacionados a grandes crateras como Canyon Diablo no Arizona com cerca de 1200 metros diâmetro e 50.000 anos. Encontramos inúmeros outros exemplos de grandes achados com várias toneladas como o Campo Del Cielo na Argentina ou Gibeon na Namíbia. Devido também a sua alta resistência, os meteoritos ferrosos estão entre os maiores já conhecido, pois são mais resistentes a reentrada na atmosfera terrestre. O maior foi é o Hoba West, localizado na Namíbia com 6 toneladas. O maior meteorito encontrado no Brasil é o Bendengó com 5.3 toneladas e se encontra hoje no Museu Nacional, RJ.
Outro fator que ajuda no trabalho de busca dos meteoritos ferrosos é sua alta atratividade a imãs e ótima resposta a detectores de metais. Detectores de metais são extensamente utilizados em trabalhos de busca de meteoritos e não apresentam uma boa resposta em meteoritos rochosos.
Os meteoritos ferrosos são constituídos basicamente de uma liga ferro-níquel e uma pequena quantidade de outros elementos como germânio, gálio, ósmio e irídio que, por serem elementos pesados, se concentraram na região do núcleo do corpo parental.
Há duas metodologias de classificação para os meteoritos ferrosos, a mais antiga e tradicional é através do estudo da estrutura e proporção do metal níquel na liga ferro-níquel. Para tanto, bastava realizar o polimento de uma porção do material, realizar o tratamento com ácido nítrico e verificar que tipo de estrutura ficaria evidente. Com base nessa estrutura o meteorito recebia a sua devida classificação como Hexaedrito, Octaedrito ou Ataxito. Mais recentemente outro método baseado no estudo químico ou quantitativo de elementos como irídio e gálio em igual proporção de níquel passou a ser empregado. Desta classificação surgiram as seguintes classificações num total de 14 grupos diferentes: IAB, IC, IIAB, IIC, IID, IIE, IIF, IIG, IIIAB, IIICD, IIIE, IIIF, IVA, IVB. Além desses grupos uma pequena parcela ainda não foi agrupada recebendo esta mesma denominação.
Uma interessante relação entre esses dois tipos de classificações também foi observada e relacionada na seguinte tabela:
Classe estrutural
Símbolo
Camacita [mm]
Níquel
[%]
Grupo químico relacionado
Hexaedritos
H
> 50
4.5 – 6.5
IIAB, IIG
 Octaedrito Muito Grosseiro
Ogg
3.3 – 50
6.5 – 7.2
IIAB, IIG
Octaedrito Grosseiro
Og
1.3 – 3.3
6.5 – 8.5
IAB, IC, IIE, IIIAB, IIIE
Octaedrito Médio
Om
0.5 – 1.3
7.4 – 10
IAB, IID, IIE, IIIAB, IIIF
Octaedrito Fino
Of
0.2 – 0.5
7.8 – 13
IID, IIICD, IIIF, IVA
Octaedrito Muito Fino
Off
< 0.2
7.8 – 13
IIC, IIICD
Octaedrito Plessítico
Opl
< 0.2
9.2 – 18
IIC, IIF
Ataxito
D
-
> 16
IIF, IVB

 

Antes de descrever cada tipo estrutura, vale alguns comentários em relação à principal liga ferro-níquel, constituinte deste tipo de meteorito. Os dois principais tipos desta liga encontrados em meteoritos ferrosos são a kamacita e tenita. A formação de uma determinada liga de ferro-níquel no núcleo do corpo parental vai depender da proporção de níquel presente na liga ferro-níquel, da temperatura e velocidade de resfriamento. Se a proporção de níquel na liga ferro-níquel for baixa, entre 4.5 e 6.5 %, a liga resultante será a kamacita. Se a proporção de níquel for alta como 30% ou mais em relação ao ferro, teremos somente a formação da tenita. Como a proporção de níquel num meteorito ferroso está situada entre 6 a 13%, encontramos as ligas formadas somente de kamacita, somente de tenita e uma mistura das duas ligas.
Octaedritos (O): Tipo mais comum de siderito exibindo a famosa figura de Widmanstätten quando polido e tratado com ácido nítrico. É composto por uma mistura de kamacita e tenita interligados. A interligação espacial entre a kamacita e tenita se dá na forma de um octaedro, dando o nome de octaedrito a esse grupo. O espaço entre as placas de kamacita e tenita são preenchidos por uma fina mistura granular de kamacita e tenita chamada Plessita (preenchimento em Grego). Os Octaedritos são novamente classificados de acordo com a espessura da camada de kamacita na figura de Widmanstätten.
Hexaedritos (H): Tipo formado essencialmente por kamacita. O nome hexaedrito se fere a rede cristalina onde esta liga é formada. A rede cristalina tem formato cúbico com seis lados iguais e com ângulos retos entre os mesmo formando um hexaedro. Os hexaedritos não exibem o padrão de Widmanstätten como a maioria dos outros sideritos e sim pequenas linhas finas denominadas “Linhas de Neumman”, em homenagem ao seu descobridor Franz Ernst Neumann e identificou essas linhas em 1848. Estas “Linhas de Neumman” são indicativas da deformação por choque no corpo parental. O grupo químico relacionado ao hexaedrito é o IIAB.
Ataxitos (D): Raro tipo de siderito que não apresenta nenhuma estrutura óbvia quando tratados com ácido nítrico. O termo ataxito vem do Grego “sem estrutura”. É formado essencialmente com a liga rica em níquel tenita. É o tipo de siderito mais raro e nenhuma das quedas observadas até hoje de sideritos é do tipo Ataxito.